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ABSTRACT
Compressive sensing (CS) exploits the sparsity of the 

commonly encountered signals and provides the data 

compression at the first step of the image acquisition. In 

this paper, performance of various wavelet based CS 

techniques has been analysed. It is based on the concept 

that small collections of non-adaptive linear projections 

of a sparse signal contain enough information for its 

effective reconstruction using some optimization 

procedure. Wavelet Transform is widely applied to the 

domain of CS to obtain the sparse representation of the 

signals to be compressed. The results of CS techniques 

prove that the image reconstruction quality obtained by 

wavelet based CS techniques is better than the practical 

image compression standards like JPEG. 

Keywords: Compressive Sensing, Contourlet Transform, 

Slepian Wolf Coding (SW), Wavelet Transform (WT) .     

 

1. Introduction 
Compressive sensing (CS) is a new approach to 

simultaneous sensing and compression that enables a 

potentially large reduction in sampling and computation 

costs at a sensor for signals having a sparse 

representation in some basis. Generally, to avoid losing 

information when capturing a signal, one must sample at 

least two times faster than signal bandwidth (Nyquist 

Sampling Theorem). But in some applications, Nyquist 

rate is very high, which results in the larger number of 

samples and hence their compression become a necessity 

before their storage and transmission. 

     CS can be applied effectively to the sparse signals but 

most of the signals encountered practically are not 

sparse. So either Discrete Cosine Transform (DCT) or 

Wavelet transform (WT) is first applied on the signals to 

get their sparse representation. Wavelet transform based 

CS techniques are more successful as the wavelets have 

time-frequency location and multi-resolution 

characteristics , so  it can decompose the image signal 

into number of sub-band signals which are with different 

spatial resolution, frequency and directional 

characteristics. Hence, the low frequency characteristics 

of long and high frequency characteristics of short 

features can be dealt simultaneously. Also Wavelet 

transform can overcome the block artifacts introduced in 

the reconstructed image by the DCT. The main reason of 

moving on to Compressive Sensing is due to three 

significant insufficiencies suffered by the widespread 

used transform coding. Firstly, the no. of samples (N), 

which are initially taken, may be very large even if the 

desired number of samples (K) is small. Secondly, the set 

of transform coefficients for all the N samples i.e (Si) 

must be computed even though only desired K sample 

coefficients are retained and rest all are discarded. 

Thirdly, the location of K large co-efficient must be 

encoded thus introducing an overhead. 

     In the following section, background of compressive 

sensing and wavelet transform has been discussed. In 

Section 3, various wavelet based compressive sensing 

techniques have been discussed. Section 4 contains 

results and in last Section 5 the paper has been 

concluded.  

 

2. Compressive Sensing and Wavelet Transform 

Compressive Sensing can be applied on 1-D finite signals. 

To understand the concept of compressive sensing, let a 

finite length, real valued, one - dimensional, discrete time 

signal x has been considered. Here the function x being 

expanded is discrete, so the resulting coefficients are 

called discrete wavelet transform (DWT) obtained by the 

use of a set of Fourier basis function Ψ. For simplicity it 

is assumed that these basis Ψ are orthonormal. Signal x 

can be sparsely represented using Fourier basis Ψ. 

 x= 𝑺𝒊𝚿𝒊𝑵
𝒊=𝟏  or x=s Ψ        (1) 

 „Si‟ is sparse signal matrix with K nonzero coefficients 

and it is (N*1) column vector. The signal x is K sparse if 

K of the Si coefficients are nonzero and (N-K) are zero 

and (K<<N). Signal x is compressible if it has a few large 

coefficients and many small coefficients. Now general 

linear measurement is done that computes M<N inner 

products between x and a collection of vectors  as 

in, =  as in [1].The signal x can be recovered 

from its measurements when the measurement matrix Ф 

is incoherent with the dictionary Ψ on which the signal is 

sparse over. Some choices for the measurement matrix, 

Φ which satisfies RIP are a random matrix with i.i.d. 

Gaussian entries or the Bernoulli (±1) matrix . Using 

such a matrix Φ of size cK × N, where c is an 

oversampling factor, it was shown that it is possible, with 

high probability, to recover any signal that is K-sparse in 

the dictionary Ψ from its projection onto Φ. 

     Given the M vector of measurements, [y=Фx], the 

recovery algorithm consists of solving the convex 

problem 
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                 subject to    Фx`= y               (2) 

Basically   𝒍𝟏 minimization norm is used for 

reconstruction because (i) Sparse signals have small  𝒍𝟏 

norms related to their energy. (ii) It is convex, which 

makes optimization problem tractable.  

              =argmin 1   such that Θs‟=y.       (3)               

where as   is the approximation of the original signal x. 

The location of the important transform coefficients can 

be determined and their value can be reconstructed from 

(3). The importance of knowing the location of important 

transform coefficients comes from the fact that the image 

that is acquired is sparse in the wavelet domain but 

spread in the measurement domain, so the location of 

important values are not known. The (3) „triangulates‟ 

the locations of important transform coefficients and 

their values.  

 

 

3. Analysis of Wavelet Based Compressive Sensing 

Techniques 

When the image data is sent over noisy channel which 

provides a high risk of bit loss then CS helps in retrieval 

of the lost information as CS measurements of 2D-DWT 

carry nearly the same amount of information and hence 

bit loss effects get reduced where as in all widely used 

image compression standards like JPEG, JPEG-2000, 

only channel coding deals with this issue. 

     In this scheme, the original image is first normalized 

to (0-1) at the encoder then DWT is performed to get its 

sparse representation as in [2]. Based on the properties 

of the 2D DWT, these coefficients are re-sampled using 

measurement matrix Ф and then resultant random 

measurements are quantized. For the collection of 

measurements previously used W-CS was replaced by 

M-CS as it gives better results than (W-CS) and in  each 

M-CS sub-band can be grouped and measured as 

follows:-   

     

       =                   (4) 

Yi=  …….         (5) 

Xi=  …….         (6)                     

Yi  and Xi denote the compressive sensing measurements 

and wavelet coefficients respectively at decomposition 

level i =[i= 1,2….L]. Mi and Ni represent the number of 

samples and coefficients at the corresponding level. Фi 

represents the Gaussian random matrices applied for 

compressive sensing measurements. In this scheme, the 

criteria for measurement allocation was to include all the 

measurements from the decomposition level L which has 

small number of coefficients carrying major information 

about the original image and for the sub-band in other 

scales, the CS measurements are distributed according to 

the bit budget and the number of coefficients at different 

levels. Before sending to decoder, the data is packeted 

and to each packet a prefix is added so that the decoder 

can know which packets have been received. The packets 

that are not been received, their corresponding rows in 

the measurement matrix are deleted and compressive 

sensing reconstruction is done by solving the following 

 𝒍𝟏 minimization problem 

            =arg min‖ ‖l1 subject to ‖‖Фf_y‖l2 ≤ Ԑ      (7) 

 where Ԑ is the error bound for the effective 

reconstruction and  𝒍𝟏 and  𝒍𝟐 represents minimization 

procedures. 

 

     In remote sensing systems which face the problem of 

limited computational source and transmission 

bandwidth ,wavelet based CS is combined with Vector 

Quantization (VQ) and Arithmetic Coding (AC) as in [3]. 

In this technique, DWT is performed to get the sparse 

representation of the image then linear projections of the 

sensed image are measured at the transmitting side, 

these measurements are then represented in the terms of 

indices of the codebook which are further subjected to 

AC for the purpose of bit reduction (in which more 

frequently used indices are represented by few bits and 

rarely used indices are represented by large bits) To 

know about the occurrence of indices, their probabilities 

of occurrence should be known which is obtained by 

studying the histograms of set of VQ training images. 

Then the variable numbers of bits for the compressed 

and quantized measurements due to the Arithmetic 

Coding of the indices are sent to the ground station of 

remote sensing system. At the decoder, received AC 

indices are decoded using same histograms as in encoder. 

Then the codebook indices are decoded using VQ look-

up tables to get the CS measurements from which then 

the reconstructed image is formed. The complete scheme 

has been diagrammatically depicted in “Fig. 1”. 

 

 

Figure1. The block diagram of transmit and receive side 

of wavelet based CS technique combined with VQ and 

AC. 

     In Compressive Sensing of color images, the image is 

acquired in the form of three channels i.e. red (R), green 

(G), blue (B) channels which have sparse representation 

in Wavelet domain as in [4]. The equation of this 

transformation can be shown as: 
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                  C= xc, C Ԑ [R, G, B], xc=ФC              (7) 

where C represents each channel, xc represents sparsely 

transformed coefficients of color channel  and Ф 

represents transformation matrix. The lower 

dimensional projection of each color signal is collected 

as: 

    yc = AcC  = Ac  xc,  ,  C Ԑ [R,G,B]             (8) 

     These three channels are highly correlated as the 

sparse transformed coefficients of all the channels have 

been obtained by orthogonal transformation (Ψ is ortho-

normal base function), so if the value at index j is high in  

 , then it will also be high in  and .In the image 

reconstruction by convex optimization, only one of the 

coefficients from the group of correlated coefficients are 

likely to be selected, but to get the better result, non-

convex group sparse optimization is preferred which 

guarantee the selection of all the three high valued 

coefficients at the same index. Mathematically, it 

involves solving the problem 

      min   subject to y=Mx.                        (9)      

         

     Compressive Sensing can be applied to 1-D data so 

when CS is applied to 2-D contourlet sub-band , the sub-

band needs to be converted to 1-D long vector which is 

then measured by large random matrix as in [5] and 

hence the number of computations and the storage space 

requirement is very high, so the application of CS 

reconstruction process to sparse contourlet sub-bands is 

avoided. In this scheme, transformation of contourlet 

sub-bands are done in wavelet domain in order to 

concentrate the sub-bands in small subspaces and then 

these generated wavelet coefficients are used for CS 

framework which then result in reduction in size of 

measurement matrix Ф. At the decoder, inverse wavelet 

transform is applied on the received signal. As signal was 

transmitted over noisy channel so thresholding is done to 

denoise the image. After this inverse contourlet 

transform is implemented, this is then finally subjected 

to Wiener filtering to get the reconstructed image . 

The proceedings at the encoder and the decoder have 

been shown below in “Fig. 2”. 

 

Figure2.The flowchart of CS reconstruction based on 

wavelet in the contourlet domain 

 

     Wavelet based Compressive Sensing is also used in 

medical imaging field like for ECG and EEG signal 

processing as in [6]. First, to get the sparse data from the 

ECG and EEG signals combined scheme of wavelet 

transform (Daubechies Wavelet) and iterative 

thresholding is used which gives a good performance of 

denoising on the data. Then the sparsely represented 

data is fed to CS framework for further compression. CS 

measurement can be represented as  

          G=λw=λws+λwe= λws+ne      (10) 

ws represent an N-dimensions vector that is identical to 

vector w, which has M elements with the largest 

magnitude we is identical to w for the smallest N-M 

elements . ne are approximated as a zero-mean Gaussian 

noise with unknown variance σ
2
. In the case of ECG 

signals, QRS wave carries major information about state 

of heart, so prior to compression QRS wave is extracted 

from ECG signals, but when only QRS wave is 

considered wavelet transform is not used. Then at the 

receiving station, basic pursuit (BP) or Bayesian 

compressive sensing (BCS) algorithm is used for 

reconstruction from the received signals. 

 

     Radio Astronomy makes use of the CS as the 

observations of the sky using interferometers are 

inherently under-sampled in angular frequency as in [7]. 

This scheme helps to extract information on particular 

angular scales but limits the fidelity of the reconstructed 

images as well as their dynamic range, and consequently 

significant effort and expertise is invested in optimal 

image reconstruction techniques. The original sky signal 

is first sparsely represented by wavelet transform using 

Fourier basis Ψ, then the obtained wavelet coefficients 

are multiplied by the aperture illumination function of 

our telescope as x.When observed with an interferometer 

the signal is sampled using the noisy Fourier basis Ф. 

y = M Ф x + n                (11)             

      Due to the finite number of baselines in our 

interferometer, the sampling is incomplete in Fourier 

space and this is included through the matrix M. ni is the 

Gaussian noise on a measured visibility and the sampled 

measurements, yi, are simply the recovered visibilities. 

At the ground station, the CS reconstruction procedure 

can be applied to get the recovered signal x* from y. 

There is one limitation for use of this method for radio 

interferometry as the sampling distribution produced by 

interferometers is deterministic in Fourier space but CS 

is optimally performed by random sampling of Fourier 

frequencies. However this problem may be tackled by re-

weighting the visibility distribution in the same way as is 

done to improve the form of the synthesized beam using 

so-called normal weighting, which homogenizes the 

spatial weight of the distribution of visibilities in uv 

space. 

 

4.  Results  
 

The results obtained from above discussed techniques 

make CS applicable in different areas. In the first 

technique of CS, extensive experimental results have 

been reported to verify the robustness of the CS-based 

image coding scheme with packet loss.  Also the results 

show the impact of the choice of wavelet transform on 
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the reconstructed image. 512 × 512, 8 bpp (bit per pixel) 

greyscale image Lena, were used for evaluation. Test 

image was encoded at 1.0 bpp and 0.5 bpp, the packeted 

bit stream was sent through a noisy binary symmetric 

channel (BSC) channel under various packet loss rates 

(PLRs) (up to 0.5).It can seen that the CS measurements 

architecture (M-CS) is modified from the conventional 

wavelet CS scheme (W-CS) in which measurement from 

each different scale is collected as per the number of 

wavelet coefficient at the corresponding level (used in 

[8]). So, the main difference between W-CS and M-CS 

lies in the CS measurements allocation “Fig. 3”shows 

that M-CS outperforms W-CS as in [2]. 

                                                                    

 

(a) 

 

(b) 

Figure3. showing performance for 512×512 Lena coded 

at 1.0bpp with PLR=0.3 (a) W-CS; (b) M-CS 

     When CS is used in combination with VQ and AC for 

remote sensing systems, the results can be evaluated 

using MATLAB. Here, to show the performance of this 

algorithm a man‟s image of size 1024x1024 pixels has 

been taken. This image is segmented into blocks of size 

128 x128 and then CS framework has been applied at 

both the transmitting and receiving side. The results that 

are obtained are then compared with DCT based JPEG 

in which image is segmented into blocks of size 8 x8 

pixels. However, PSNR of JPEG recovered image is 

slightly higher but the computation time in CS scheme at 

the encoder has 110x reduction in latency on the 

transmit side as compared to JPEG. Moreover, the 

reconstruction quality of reconstructed image obtained 

by CS technique is better than that of JPEG as in [3] as 

shown in “Fig. 4”. 

 
(a) 

 

 
(b) 

 

 
 (c) 

Figure4. Original image and Comparison between CS 

and JPEG reconstructed images at the 0.47 and 0.5 bpp, 

respectively. 

 

     In CS based color image compression, the 

reconstructed image can be obtained by convex 

optimization or by non convex group sparse 

optimization. Both differ in the way in which the CS 

measure correlated coefficients are considered either in 

group or individually respectively. The experimental 

results show that the later technique gives better results. 

As when the image of Barbara, Lena are reconstructed 

by both convex and non-convex group optimization (by 

 minimization and p=0.4) at projection function 10, 

the PSNR obtained is between (24 dB-26.1dB) and 

(26.30dB-27.60dB) respectively as in [4] shown below in 

“Fig. 5”. 

 

 
   Figure5. (L–R) Barbara,Lena. 

 

     When only Wavelet Transform is used in CS 

reconstruction, the computation burden involved is 

comparably small but the quality of reconstruction is 

much better when the CS based on Wavelet Transform 

in Contourlet domain is performed as wavelets could not 

provide the sparsest representation when applied in 

isolation. The difference in the results produced by the 

two schemes as in [5] can be clearly seen in the “Fig. 6”. 
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(a) 

 

(b) 

Figure6. Recovery results of image„Lena‟:(a) 

reconstruction from CS based on wavelet [2] by BP, 

Smax=1536_3072, PSNR=29.437c)reconstruction from CS 

based on the wavelet transform in contourlet domain by 

BP, Smax=1536_3072, PSNR=36.194. 

Now , the results obtained by ECG signal processing 

using CS technique has been shown from which it is clear 

that after wavelet transform the signal turns into sparse 

signal then compressive sensing is executed to the sparse 

coefficients of the signals with iterative threshold 

method. Next, the BCS reconstructing method is used to 

reconstruct the coefficients as shown in“Fig. 7(c)”. 

Finally, the original signal can be restored as shown in 

“Fig. 7(d)” by the reconstructed coefficients as in [6] by 

using inverse wavelet transform. 

 

 
(a) 

 

 

 
(b) 

 

 

 
(c) 

 

 

 
(d) 

Figure7.  ECG signals with BCS (a) Original signal (b) 

Wavelet coefficients of the original signal (c) 

Reconstructed coefficients (d) Reconstructed signal 

 

5. Conclusion 
From above results it can be concluded that CS has 

potential to replace or stand among the other image 

compression standard widely in use (JPEG and JPEG-

2000). The results which are obtained are better than the 

linear reconstruction techniques.  Also it provides the 

additional advantage of robust image compression which 

is very important as most of the signals /images are 

practically sent over noisy channel. Wavelet based CS 

techniques prove better than DCT based JPEG or DCT 

based CS as the parallel computing can‟t be performed 

on the image transformed by using DCT due to the 

introduction of block artifacts in the reconstructed 

image. So the system which are limited by the battery 

power, wavelet based CS has the computational 

advantage over JPEG when low power parallel 

processors such as micro-core parallel processors are 

used.  

     CS holds significant unrealized potential for 

application to highly detailed natural images, 

particularly in environment characterized by moderate 

to high values of high frequency information and/or 

noise, the potential for missing image data, and 

asymmetrical communication systems. But the main 

limitation of CS is that it can be effectively applied for 

the compression of high frequency information and the 

significant amount of attention that has been given to the 

theoretical aspects of compressive sensing, the practical 

image compression is still dominated by JPEG and 

JPEG-2000. 
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